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Abstract — Several empirical studies show that, under multiple 

risks like stochastic volatility and jump risks, markets exhibit 

many new properties, such as volatility smile and cluster fueled by 

the explosion of transaction data. The traditional Black-Scholes 

model fails to fit these newly-developed characteristics. This paper 

attempts to capture these newer features, using the valuation of 

European options as a vehicle. Statistical analysis performed on 

the data collected from the currency option market clearly shows 

the existence of mean reversion, jumps, volatility smile, and 

leptokurtosis and fat tail.  We characterize the dynamics of the 

underlying asset in this kind of environment by establishing a 

coupled stochastic differential equation model with triple 

characteristics of mean reversion, non-affine stochastic volatility 

and mixed-exponential jumps. However, the traditional 

no-arbitrage option pricing theory no longer applies for analytical 

solution of this model. Moreover, the commonly used Monte Carlo 

simulation to numerically calculate the option prices takes a long 

time, especially for a huge amount of data. We propose a 

characteristic function method to derive the closed-form pricing 

formula. We also present a Fast Fourier Transform (FFT) 

algorithm-based numerical solution method. Finally, extensive 

numerical experiments are conducted to validate both the 

modeling methodology and the numerical algorithm. Results 

demonstrate that the model behaves well in capturing the 

properties observed in the market, and the FFT numerical 

algorithm is both accurate and efficient in addressing large 

amount of data. 

Index Terms — Multiple risks; European option pricing; 

stochastic modeling; Fast Fourier Transform algorithm; big data 

analysis. 

I. INTRODUCTION 

PTION is being increasingly used as a very important contract 

for hedging and risk aversion in both financial and operational 

markets. The Shanghai Stock Exchange issued the first option in the 

Chinese financial market, called the 50ETF option, on February 9, 

2015. In the global industrial procurement, the option contract is 

commonly used to avoid various kinds of risks, such as price, demand, 

and foreign exchange rate risks. Therefore, valuing the options more 

accurately and quickly is of great importance, especially in the big 

data era. 

The best-known among all the option pricing theories is the 

Black-Scholes (BS) formula derived by Black and Scholes (1973) [1]. 

This formula greatly promoted both the application of options in the 

market and the rapid development of option theories. Until around 

1986, the BS pricing model was proven to be able to depict the market 

very well. However, the applicability of this model was later widely 

questioned as a series of mishaps occurred in the financial markets. 

Prominent among them were the Asian financial crisis during the 

1990s and the subprime crisis and the subsequent failure of the 

Lehman Brothers in the early 21st century. In fact, the traditional BS 

model does not work when the market risks, such as stochastic 

volatility and jump risks, increase. Another new development is the 

advent of the big data era where bulk data handling techniques enable 

the collection and processing of big and high-frequency data. Many 

empirical studies show that the mass and high-frequency data 

demonstrate new properties of the option market, such as leptokurtosis 

and fat tail, volatility smile, asymmetric distribution, and volatility 

cluster. To explain these phenomena, many researchers have improved 

the classical BS model with various methods. We include a review of 

these improved models in Section II.  

In this paper, we propose an adaptable modeling methodology that 

could better capture the new properties of the underlying asset when 

multiple risks exist. We also present an effective and efficient option 

pricing method to provide a useful tool for practice. We consider the 

European option pricing issue as a vehicle of analysis. Traditionally, 

researchers have developed their solution methods under a number of 

restrictive assumptions (as detailed later) in order to make the models 

tractable. We make only three assumptions that are not over-restrictive 

and do not take away from the usability of the results. Our first 

assumption is that the short-term interest rate is constant. Secondly, 

there are no transaction costs or taxes. Finally, the market pays no 

dividends or other distributions. A more detailed description of these 

assumptions is given later in Section IV. Based on these assumptions, 

we establish a coupled dynamic model for the log underlying asset 

under risk neutral measures. We are able to obtain both analytical and 

numerical solutions for the European option pricing problem. This 

paper has the following four main contributions: 

1) Using a series of empirical performance based on statistical 

analysis, we demonstrate that, under multiple risks, certain 

kinds of markets like the currency option market show the 

characteristics of mean reversion, jumps, volatility smile, and 

leptokurtosis and fat tail simultaneously. This is shown in 

Section III.   

2) Based on the empirical evidences, the classic BS modeling 

structure and some relevant research literature, we use the 

methods of stochastic equations and analyses and establish a 

general European option pricing model under risk neutral 

measures. We prove through a series of numerical experiments 

that our triple-characteristic stochastic model is able to 

well-describe the new market properties mentioned above, 

namely mean reversion, jumps, volatility smile, and 

leptokurtosis and fat tail.  

3) With the methods of characteristic function initially proposed by 

[2], we derive the approximate analytical solution for the 

European option by adopting a number of mathematical tools, 

such as the generalized Feynman-Kac formula, nonlinear 

perturbation analysis, and solution techniques for the Ricatti 

equation.  

4) Basing on the analytical solution, we develop a Fast Fourier 

Transform (FFT) algorithm (first introduced by [3]) to obtain a 

numerical solution method that does well in addressing large 

amounts of data. Our numerical experiments demonstrate that 

the FFT algorithm-based numerical solution method is both 

effective and efficient compared with performance of traditional 

Difference Monte Carlo (DMC) simulation. 
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The remainder of this paper is organized as follows. We review the 

literature related to our paper in Section II. Section III provides 

empirical evidences to demonstrate the validity of the model proposed 

in this paper. In Section IV, we lay out the basic model for the log 

underlying asset with properties of mean reversion, non-affine 

stochastic volatility, and mixed-exponential jumps. In Section V, we 

introduce our European options pricing model, both analytically and 

numerically. In Section VI, we show parts of the results from our 

extensive numerical experiments. Section VII concludes this paper 

and indicates some future research directions.  

II. SURVEY OF RELATED LITERATURE 

There are three main issues related to our paper, namely 

background, modeling and calculation. Our research was conducted 

based on the market risk analysis under the environment of big data, 

and our models were established on the basis of the existing option 

pricing methods. Moreover, the proposed numerical algorithm for 

model calculation was greatly inspired by previous works. Therefore, 

we carry on a thorough literature review in the three dimensions: risk 

analysis, modeling methods and numerical algorithms.        

A. Risk Analysis  

  There are a variety of risks that widely exist in different systems. 

Additionally, as the systems develop, many new kinds of risks emerge. 

Risk analysis, therefore, is a very important research topic. Several 

papers have focused on exploring new methods to effectively identify, 

evaluate and control risks. For example, Choi explored the risk levels 

of a two-echelon supply chain system with vendor managed inventory 

scheme, and concluded that the RFID technology could improve the 

supply chain resulting in both larger expected profit and smaller risk 

[4]. Large-scale integration of renewable energies causes a higher 

degree of volatility and uncertainty of power flows in the electrical 

transmission system, giving a higher risk of cascading line outages. 

Muller et al. proposed a novel approach for a distributed real-time 

coordination and effectively controlled the risks in power flow [5].  

Especially, option contract is a very common and useful tool among 

all kinds of risk controlling strategies. For instance, Asian and Nie 

designed an option contract to cope with the global supply network 

risks caused by market volatility and supply disruptions [6]. Shi and 

Min proposed a real option approach to control the cost uncertainty 

risk by allowing a firm to decide when to replace the leased product 

and remanufacture it [7].         

B. Modeling Methods 

  The traditional BS model was established under many assumptions.  

Both the expected return of the underlying asset and its volatility were 

presumed to be constants. Moreover, it was assumed that the curve of 

the underlying asset price was continuous. However, these 

assumptions are widely questioned by series of practical observations 

and empirical research works. Therefore, many papers have attempted 

to improve the BS model from different perspectives. Generally, these 

modeling methods may fall into three categories, namely, mean 

reversion models, stochastic volatility models and jump models. To 

capture the mean reversion character observed in markets like 

commodity, Hahn and Dyer utilized a more general binomial 

approximation methodology to model simple homoscedastic 

mean-reverting stochastic processes as recombining lattices for real 

option valuation [8].  

  Also, “volatility smile” is a well-known phenomenon. To address 

this problem, many scholars have explored various modeling methods, 

among which stochastic volatility models are most widely recognized. 

For example, Park and Kim investigated a semi-analytic pricing 

method for lookback options in a general stochastic volatility 

framework [9]. Nearly all the stochastic volatility models are affine. 

However, some papers recently found that the non-affine property of 

the financial time series existing in reality could not be well described. 

As a result, a growing number of scholars have started focusing on 

pricing options with the models of non-affine stochastic volatility. For 

instance, Yuen and Zheng considered pricing of various types of 

exotic discrete variance swaps, like the gamma swaps and corridor 

variance swaps, under the 3/2 non-affine stochastic volatility models 

[10].  

  Moreover, in practice, various kinds of jumps exist widely in the 

markets because of factors like wars, economic crises, and real-time 

market trading. Option pricing problems where the dynamic process 

of the underlying asset follows a jump diffusion model have been well 

researched. A generalized jump-diffusion model was proposed to price 

European vulnerable options by Fard, and a closed-form price solution 

was derived by Esscher transform [11]. Furthermore, some papers 

study option pricing with underlying assets simultaneously exhibiting 

two kinds of the three properties mentioned above. For example, 

Chung and Wong investigated analytical pricing of discrete arithmetic 

Asian options with mean reversion and jumps [12], while Mayer et al. 

modeled electricity spot prices combining mean reversion and 

stochastic volatility [13].    

C. Numerical Algorithms 

Adaptable numerical algorithm for option pricing is another branch 

of literature closely related to our research. Rapid and accurate pricing 

of the options, especially in the era of big data, is of great importance 

in practice. Researchers have been exploring both traditional and 

modern numerical algorithms for option pricing models. Several 

studies have focused on modern algorithms. For example, Gradojevic 

et al. investigated a nonparametric modular neural network (MNN) 

model to price the S&P-500 European call options [14]. Most studies 

focus on the traditional algorithms, though. For instance, Tse et al. 

presented a novel parallel architecture for accelerating quadrature 

methods used for pricing complex multi-dimensional options [15]. 

Zhou proposed a new approximate value iteration method, namely 

near-value iteration, to solve continuous-state optimal stopping 

problems under partial observation [16]. Especially, as a very efficient 

algorithm, FFT was widely applied in various areas, such as [17], [18] 

in signal processing as well as [19] in defense and security systems. 

Carr and Madan successfully introduced the FFT into option pricing 

[3].  

  Relying on risk analysis methods presented in Section II-A, we 

analyze various emerging risks in the big data era, and capture some 

simultaneously exhibited properties in certain market, which inspire 

and lay a solid basis for the subsequent modeling and calculation 

research works. The models reviewed in Section II-B improved the 

classical BS model through capturing one or two of the several data 

characteristics. Based on the studies above, we combine the triple 

characteristics of mean reversion, non-affine stochastic volatility, and 

mixed-exponential jumps to establish a general stochastic model. To 

the best of our knowledge, this type of general stochastic model has 

not been adequately explored before. Our model is able to depict the 

phenomena of mean reversion, jumps, volatility smile, leptokurtosis 

and fat tail, which are simultaneously observed in some markets like 

the foreign currency option market. This will be detailed in Section III. 

Moreover, using the FFT algorithm-based method proposed in Section 

II-D, we obtain an effective and efficient numerical solution for the 

proposed model.  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gradojevic,%20N..QT.&searchWithin=p_Author_Ids:37946695200&newsearch=true


 

 

  

 
Fig. 1. Historical data series for foreign exchange rates of EURGBP and EURUSD from January 1, 2001 to May 18, 2015 

 

Fig. 2. Market implied volatility smiles for different maturities, one figure for shorter maturities and the other for longer maturities. 

     
Fig. 3. Statistical distributions for the daily yields of EURGBP and EURUSD foreign exchange rates. 

III. EMPIRICAL EVIDENCE 

In this section, we conduct some statistical analysis to show the 

simultaneous occurrence of mean reversion, jumps, volatility smile, 

and leptokurtosis and fat tail in data from real life. To do that, we use 

data from the currency option market collected from the Saxo Trader 

platform.  

A. Mean Reversion and Jumps Phenomenon 

To present the phenomenon of mean reversion and jumps, we 

collected the daily mid-quotes of EURGBP and EURUSD foreign 

exchange rates for the period between January 1, 2001 and May 18, 

2015 as shown in Fig. 1, which visually shows significant 

mean-reversion characteristics of both EURGBP and the EURUSD. 

Using the EURUSD as an example, the data shows that the Euro 

maintained a distinct depreciation trend relative to the Dollar from 

January 1, 2001 through June 2001. Subsequently, the Euro exchange 

rate increased rapidly until November 2001. In the following 12 years, 

the Euro exchange rate underwent a number of appreciations and 

depreciations with respect to the dollar. EURGBP shows similar 

trends. Additionally, jumps are seen to be obviously occurring 

frequently in the historical data. We see the exchange rate jumping up, 

and at other times jumping down. This shows that it is very mportant 

to include mean reversion and jumps into any option price modeling.. 

B. Volatility Smiles Phenomenon 

In order to illustrate the volatility smile phenomenon, we collected 



 

 

data of the observed implied volatilities of the foreign exchange  

TABLE I 

LIST OF SYMBOLS 

Symbol Description 

[ ]QE   Expectation function under risk neutral measure Q . 

( , , )P F  Real probability space. 

( , , )Q F  Probability space under risk neutral measure Q . 

T  Delivery time of a European option. 

K  Exercise price of a European option. 

( )C   European option price function. 

0 / TC C  European option price at time 0 / T . 

t / u  Time, / [0, ]t u T . 

tS /
uS /

0S /
TS  Underlying asset price at time / / 0 /t u T . 

tS 
/

uS 
 Value of tS / uS  before a jump happens at time /t u . 

c

tS / c

uS  Continuous part of tS / uS . 

tv /
0v  Volatility of the underlying asset price at time / 0t . 

 / *  
Mean reverting intensity of the underlying asset under 

different probability measures. 

 / *  
Equilibrium mean level of the asset against time under 

different probability measures. 

a / *a  
Equilibrium mean level of the volatility process. 

against time under different probability measures. 

b / *b  
Mean reversion speed of the volatility process under 

different probability measures. 

  Constant volatility coefficient of the volatility process. 

  Correlation coefficient for the two Brownian motions. 

1

tW / 2

tW  
Two correlated Brownian motions with correlation 

coefficient   in real probability space. 

1*

tW / 2*

tW  
Two Brownian motions corresponding to 

1

tW / 2

tW under risk neutral measure. 

{ }iV  
A set of nonnegative stochastic variables, representing 

the percentage of jump amplitude. 

J  
A stochastic variable representing the jump amplitude, 

which follows a mixed-exponential distribution. 

  Jump intensity, 0  . 

up / ip / i / 

dq /
jq /

j  
The relevant parameters defined in a 

mixed-exponential distribution. 

tN  
Poisson process with jump intensity 0   defined in 

real probability space. 

*

tN  
Poisson process corresponding to tN  under risk 

neutral measure. 

tX / uX / uX  Log underlying asset price at time / /t u T . 

tX  / uX   
Value of tX / uX just before a jump happens at time 

/t u . 
c

tX / c

uX  Continuous part of tX / uX . 

| ( )
T tX F / T  Characteristic function of log underlying asset price. 

1

, ( )k uF    Inverse Fourier transformation function. 

  The modifying factor and 0  . 

r  Risk free interest rate. 

k  Log exercise price. 

( , , )M    / ( , , )W     Two Whittaker functions. 

N  Sectional number of a given interval for exercise price 

M  Sample size for Difference Monte Carlo simulation. 

/ /l h j  Counting variable. 

/ l  Step length for different intervals. 

( , )C t T / ( , )D t T / 

( , )B t T / ( )u / 

( )w  / ( )x  / ( )f   

Intermediate functions during derivation process. 

* */ / / /p q s p q  

/y u  
Intermediate variables during derivation process. 

 

options written on EUR/USD from the trading platform. An example 

of observed implied volatilities for eight different time-to-maturities 

on May 18, 2015 is presented in Fig. 2. We observe an obvious 

volatility smile phenomenon for the currency options, both in short 

maturities of 3, 10, 17 and 24 days and in long maturities of 38, 52, 80 

and 108 days. These empirical evidences strongly suggest that option 

pricing models should be sufficiently flexible to capture not only the 

mean reversion and jumps but also the volatility smile.  

C. Leptokurtosis and Fat Tail Phenomenon 

To figure out whether the leptokurtosis and fat tail phenomenon 

exists in the currency option market, we conducted statistical analysis 

on the daily mid-quotes of EURGBP and EURUSD foreign exchange 

rates from January 1, 2006 through to May 18, 2015. We calculated 

the daily   yields of EURGBP and EURUSD respectively, and 

plotted their distributions in Fig. 3. It shows that both the distributions 

of EURGBP and EURUSD foreign exchange rates are leptokurtosis 

and have fat tail. More specifically, we calculated that the kurtosis for 

the two distributions are 9.37 and 7.70 respectively, which were much 

larger than 3.00, the kurtosis for normal distributions. Thus, one can 

infer that the leptokurtosis and fat tail phenomenon does exist in the 

currency option market. This analysis motivates us to include the 

characteristic of leptokurtosis and fat tail when modeling the 

dynamics of the underlying asset. 

IV. BASIC MODEL FOR UNDERLYING ASSET 

In this section, we establish a basic stochastic model for the price of 

an underlying asset. For readability, we have presented all the 

mathematical symbols and their descriptions in this paper in Table I. 

As mentioned earlier in Section I, we use the following three 

assumptions in our modeling.  

Assumption 1. The short-term risk-free interest rate is known and 

constant through time. 

Assumption 2. The market is frictionless, i.e., there are no 

transaction costs or taxes in the market. 

Assumption 3. The market does not pay dividends or other 

distributions. 

Compared to the classical five assumptions normally used for the 

market of underlying asset (refer to [1]), the assumptions proposed 

here are much weaker. Owing to the pricing methods adopted, we do 

not have to assume that it is possible to borrow any fraction of the 

price of a security to buy it or to hold it at the short-term interest rate 

or there are no penalties to short selling as done in [1]. These three 

assumptions are used to simplify the model setting and make it more 

tractable so as to generate meaningful managerial guidelines. Our 

main results would still hold if these assumptions are relaxed. In case 

these assumptions are relaxed, the pricing results would surely be 

more accurate since the basic model would be more consistent with 

the real life situation. However, in this paper, we mainly focus on 

providing a modeling methodology which would better characterize 

the concurrent properties present in some markets mentioned in the 

previous sections. The three factors referred in the assumptions are not 

the key points related to the market properties being considered, so 

these assumptions do not take away anything from our analysis of the 

real life situation.    

We now build the basic log asset price model under the classical BS 

structure. As detailed in our literature review, many scholars have 

explored different ways to improve the classic BS model in order to 

reflect the new features of the market. Several of these main  



 

 

TABLE II 
DYNAMIC MODELS FOR OPTION PRICING 

Pricing models Dynamics 

Black Scholes model (BS) t t t tdS S dt S dW     

Mean Reversion model (MS) ( ln )t t t t tdS S S dt S dW      

Stochastic Volatility model (SV) 1

2
( )

t t t t t

t t t t

dS S dt v S dW

dv v dt v dW



  

  


  

 

Normal Jump model (NJ) 
 ( , )

t t t t t tdS S dt S dW JS dN

J Normal a b

   



 

The models are illustrated under objective measures. 

 

 

categories are shown in Table II. However, through statistical analysis 

on empirical data, we demonstrated that the phenomena of mean 

reversion, jumps, volatility smile, and leptokurtosis and fat tail do 

simultaneously occur in some markets. As mentioned, our aim in this 

paper is to establish a model which could characterize the properties 

of these markets. To depict the mean reversion feature, we take the 

mean reversion item into our model based on the MS model. Also, SV 

models offer a good approach to address the volatility smile/skew, and 

according to literature, non-affine stochastic volatility model has 

better description effect than the traditional affine one. Therefore, we 

adopt a non-affine stochastic process to model the dynamics of the 

volatility. Moreover, compared to the NJ models, the 

mixed-exponential distributions can approximate any distribution as 

closely as possible and thus could simulate various kinds of big and 

small jumps existing in the market. Hence, we model the jump 

phenomenon with mixed-exponential jumps. 

On the basis of the above analysis, we build a coupled stochastic 

equation model with triple characteristics of mean reversion, 

non-affine stochastic volatility, and mixed-exponential jumps 

(hereafter referred to as the “triple characteristics model”). The 

following steps derive our basic model.  

A. Basic Model without Jumps 

Assume that the underlying asset price 
tS  and the corresponding 

volatility 
tv  follow the dynamic model below: 

         
1( ln )t t t t t tdS S S dt v S dW              (1) 

 
/2 2( )t t t tdv b a v dt v dW                (2) 

   
1 2

t tdW dW dt                 (3) 

where   is a constant representing the equilibrium mean level of the 

asset against time,   is the mean reverting intensity of the assets, a  

is a constant standing for the equilibrium mean level of the volatility 

process against time, and b  is the mean reversion speed of the 

volatility process.   is the constant volatility coefficient of the 

volatility process. For the stochastic differential equation (2) to be 

well-behaved, we select [0,2] , representing the non-affine 

volatility coefficient of the volatility process. 1

tW
 

and 2

tW  are two 

correlated Brownian motions with correlation coefficient   defined 

in the real probability space ( , , )P F .  

B. Triple Characteristics Model 

We assume that 
tN

 
is a Poisson process defined in the real 

probability space ( , , )P F  with jump intensity coefficient 0   

and is independent from 1

tW  and 2

tW . { }iV
 

is a set of nonnegative 

stochastic variables which are independent from each other and have 

identical distributions, representing the percentage of jump amplitude.  

Let log( )J V , then J  follows a mixed-exponential distribution: 

( , , , , , ),u i i d j jJ MEJ p p q q 
1 2 1,2, , ;   1,2, , .i n j n 

 
with density function as follows: 

1 2

{ 0} { 0}

1 1

( ) 1 1ji

n n
yy

J u i i y d j j y

i j

g y p p e q q e
 

 

 

  
 

where 0,  0,  1,u d u dp q p q     stands for the probabilities that the 

underlying asset price jumps upward and downward, and 

1

1

1

( , ),   for  1, , ,   1;
n

i i

i

p i n p


       

2

2

1

( , ),  for  1, , ,  1;
n

j j

j

q j n q


      
 

1 21,  for 1, , ;          0,  for 1, , .i ji n j n        
 

As 
ip  and 

jq
 

could
 
be negative, these parameters should satisfy 

certain conditions to guarantee that the density function ( )Jg y  is 

both nonnegative and a probability density function. One necessary 

requirement is: 
1

1 1

1

0,  0,  0,
n

i i

i

p q p


   and 
2

1

0.
n

j j

j

q 


 One simple 

sufficient condition is: 
1

0,
k

i i

i

p


 1for  1, , ,k n  and 

2

1

0,  for 1, , .
l

j j

j

q l n


    

 

To ensure that 
tS

 
has a finite 

expectation, the conditions 1i   for 
11, , ,i n 

 
and 0,j   for 

21, , ,j n   are necessary.
 
Then the triple characteristics model with 

jumps is derived as follows: 

1( ln ) ( 1)J

t t t t t t t tdS S S dt v S dW e S dN               (4) 

 
/2 2( )t t t tdv b a v dt v dW                   (5) 

1 2

t tdW dW dt
                       (6) 

Other parameters are as explained in the model labeled (1)–(3). 

C. Model Transformation under Risk Neutral Measure 

According to the Girsanov theorem, a risk neutral measure Q  

exists. In the space under risk neutral measure ( , , )Q F , assume that 

the risk premium is a linear function of the variance [2], that is, 

( , , )t t tS v t v  . Let: 

1 2

1 1

[ 1]

  [ 1]= 1.
1 1

Q

n n
j jQ J i i

u d

i ji j

m E V

qp
E e p q



  

 

   
 

 
 

Then the models labeled (4)–(6) are transformed as follows through 

measure transformation: 

* * 1* *

*
( ln ) +( 1)J

t t t t t t t t

m
dS S S dt v S dW e S dN


 


         (7) 

* * /2 2*( )t t t tdv b a v dt v dW                (8) 

1* 2*

t tdW dW dt                   (9) 

where *    , * 


 



, *b b   , * ab

a a
a 

 


, 1*

tW  and 

2*

tW
 

are the standard Brownian motions under risk neutral measure 

Q  with correlation coefficients 1* 2*corr( , )t tdW dW  . 
  

D. Derivation of the Basic Log Asset Price Model 

To derive the pricing formula for European options with the 



 

 

underlying asset following dynamics (7)–(9) using the characteristic 

function method, the characteristic function for the log asset price 

needs to be determined first. Therefore, we define a new stochastic 

process { ,  0}tX t 
 
as follows: 

lnt tX S                      (10) 

Using the Itô-Doeblin formula, we obtain the following: 

   
0 20 0

0

1 1 1
( )

2

t t
c c c

t u u u u u

u tu u

X X dS dS dS X X
S S



 

          (11) 

where c

tS
 

represents the continuous part of (7) and 
tX   

means that 

the value of 
tX
 

just before a jump happens at time t . Now, we 

focus on the jump component for (11). According to the previous 

descriptions of the jumps, the percentage of the jump amplitude is Je  

as long as the jump occurs at time u , that is, J

u uS e S  . Thus, we 

obtain the following: 

ln lnu u u uX X S S J                 (12)  

If the jump does not occur at time u , then 0u uX X   . In either 

case we have: 

u u uX X J N                    (13) 

According to (13), the jump term is as follows: 

0
0 0

( )  =
t

u u u u

u t u t

X X J N JdN

   

             (14) 

Thus, the differential form of (11) is as follows:  

2

* * *

*

1 1 1
 

2

1
    ( )  +

2

c c c

t t t t t

t t

t t t t t

dX dS dS dS JdN
S S

m
X dt v dW v dt JdN


 



  

    

      (15) 

Based on equations (7)–(9) and (15), we obtain the following 

stochastic model for the log asset price: 

* * 1* *

* *
( )  +

2

t
t t t t t

v m
dX X dt v dW JdN

k


 


         (16) 

* * /2 2*( )t t t tdv b a v dt v dW             (17) 

1* 2*

t tdW dW dt                (18) 

V. OPTION PRICING: ANALITICAL AND NUMERICAL 

SOLUTIONS  

In this section, we solve models (16)–(18) analytically to obtain the 

closed-form European option pricing formula with the characteristic 

function method proposed previously and its corresponding numerical 

solution based on the FFT algorithm. 

A. Characteristic Function 

First, the approximate characteristic function for the log underlying 

asset 
tX

 
is derived based on the following mathematical tools: 

stochastic analysis, differential equation, and perturbation analysis. 

The results calculated are illustrated in Theorem 1. The specific 

derivation details are shown in the appendix. 

Theorem 1: We assume that the dynamic process of the log 

underlying asset { ,   [0, ]}tX t T
 

satisfies (16)–(18) under risk neutral 

measure ( , , )Q F  and 
tX x , 

tv v  at time  [0, ]t T . Then, the 

approximate conditional characteristic function for 
TX  is of the 

following form: 
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where
 0C

 
is a constant uniquely decided by the boundary value. 

( , , )M     and ( , , )W     are two Whittaker functions. These functions 

are two independent solutions to the well-known Whittaker equation 

and are available in Matlab software packages. These mathematical 

functions are widely applied in the fields of mathematics, physics, and 

engineering.   

B. European Option Pricing Formula 

Based on Theorem 1, we obtain the European option pricing formula 

using the method of characteristic function. The result is stated in 

Theorem 2. Though we use the European call option as an example, 

this method is also applicable to the European put option. 

Theorem 2: We assume that the market of the underlying asset 

satisfies assumptions 1–3 and the underlying asset price follows the 

dynamics (7)–(9). Then, in the option market, the pricing formula for 

the European call option with delivery date T  and exercise price K  

is as follows:  
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where | ( )
T tX y F  

is in the forms of (19)–(22) stated in Section V-A,   

represents the modifying factor and 0  , lnk K . r  is the  

short-term risk-free interest rate, and 1

, ( )k uF  
 

represents the inverse 

Fourier transformation, as follows: 

1

,

1
[ ( )] ( )

2

iuk

k uF g u e g u du




 



    

In particular, when 0t  , 
0(0, ; , )C X k T

 
is denoted by ( )TC k ; 

( , ; , )tt X u T  is denoted by ( )T u ; and | ( )
T tX y F  is

 
denoted by 

T . 

We have the following: 
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Proof: The conclusions are derived by directly applying the method of  

characteristic function proposed by Carr and Madan [3].   



 

 

TABLE III 

THE PARAMETERS SETTING FOR SECTION VI-A 

Param *  *  *b  *a      
up  

dq  
1n  

Value 10* ln1.5 3.33 0.16 0.04 0.9 0.5 0.5 1 

2n  
1p  

1q  
1  

1      
0S  

0v  T  

1 1 1 2 2 0.11* 1.1* 1.3 0.18 1 

The symbol “*” indicates that the corresponding values for the parameters are 

illustrated in the relevant figures when they are variables instead of constants, 

and we just omit them in the table for ease of presentation.  

C. FFT-Based Numerical Solution 

After obtaining the option pricing formula, we continue to derive 

the numerical solution based on the FFT algorithm. Without loss of 

generality, let 0t  . It’s well known that the FFT algorithm could 

reduce the operand from 2( )O N to
2( log )O N N , which is a rather 

considerable reduction in the operation time. FFT is an efficient 

algorithm to calculate the sum in the following form: 
2

-1 ( 1)

1

( ) ( ),
N i j h

N

j

w h e x j


 




（ ）

 1,2, ,h N        (25) 

Therefore, to adopt the FFT algorithm, transforming (24) into the 

summation form (25) is necessary. For ease of exposition, let 
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then (24) is simplified as follows: 
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The trapezoidal rule is applied to the right side of (27), and set: 

1
( 1)

2
j

N
u j


     , 1,2, , .j N  

Then, the approximate summation form of (27) is as follows:  
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The upper bound of the integral at the right side of equation (28) is 

*

2

N
q


 . 

Let * *[ , ]k p p   and set the step length as l , that is, 

* ( 1),   1,2,...,hk p l h h N              (29) 

then *
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Nl
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Substituted equation (29) into (28): 
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      (30) 

To transform (30) into the form in (25) so as to adopt the FFT 

algorithm, it must satisfy: 

2
=l

N


                      (31)   

Equation (31) is substituted into (30) to obtain: 
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where 1,2, ,h N , and  
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         (33) 

Thus far, (33) has been successfully transformed into the form in (25). 

Next, we could call the FFT algorithm from MATLAB to calculate the 

price of the European option very quickly.  

      

TABLE IV 

THE PARAMETERS SETTING FOR SECTION VI-B 

Param *b  *      
1  

up  r    
1p  

Value 3.33 10* 0.04 0.9 2 0.5 0.05 0.11* 1 

1n  2n  *a  *  0v  0S  1  dq    T  1q  

1 1 0.16 0.40339 0.18 1.3 2 0.5 1.1* 1 1 

The symbol “*” indicates that the corresponding values for the parameters are 

illustrated in the relevant figures when they are variables instead of constants, 

and we just omit them in the table for ease of presentation.  

 

Fig. 4. Probability density function for different values of * . 

VI. NUMERICAL EXPERIMENT 

In this section, we conduct several numerical experiments to verify 

both the modeling and solution methodology proposed in this paper. 

To validate the proposed model, we need to show whether the model 

could characterize the simultaneous properties of mean reversion, 

jumps, volatility smile, and leptokurtosis and fat tail observed in some 

markets. It is obvious that the basic model theoretically contains 

characteristics of mean reversion and jumps, thus we only have to 

conduct analysis on the probability density function and volatility of 

the underlying asset to see whether the model could reflect the market 

properties of leptokurtosis and fat tail and volatility smile. We also 

need to test the validity of the solution methodology. To do that, we 

compare the effects of the FFT-based numerical solution proposed in 

this paper with the traditional Differential Monte Carlo (DMC) 

simulations. All the experiments are implemented on a Pentium Dual 

2.0 GHz/2.0 GB personal computer under a Windows XP Professional 

2002 version operating system running MATLAB R2012a. For each 

experiment, the parameters are selected with reference to a previous 

study [20], and the specific settings are illustrated in each part. 

A. Probability Density Functions Analysis 

  The probability density function of the log underlying asset return 

can be obtained by inverting Fourier transform on the characteristic 

function (19). Based on the capacity of addressing a large amount of 

data quickly, the FFT algorithm makes it possible to conduct 

numerical simulations on the probability density function of the log 

return and examine the properties reflected by the proposed model. 

All the parameters values are presented in Table III and the impacts of 

* ,  , *b , and   on the distribution shape are illustrated in Figs. 4 

through 7. We see that all the distributions show the property of 

leptokurtosis and fat tail, which is consistent with the characteristics  

  



 

 

 

  

Fig.5. Probability density functions of the log return of the underlying asset for different values of *b . 

 
Fig. 6. Probability density functions for different values of  . 

 
Fig. 7. Probability density functions for different values of  .  

 

 

Fig.8. Implied volatility smile/skew for different values of * . 

 

Fig. 9. Implied volatility smile/skew for different values of * .  



 

 

 
Fig. 10. Implied volatility smile for different values of  . 

of big data fitting in our empirical study and further validates the 

effectiveness of our model. 

Fig. 4 shows how the mean reversion rate of the underlying asset 

pushes the distribution more towards the equilibrium mean level * . 

When the log return deviates from its equilibrium level * , a larger 

reverting rate helps the log return back to the equilibrium level faster. 

Consequently, the variance of the distribution is smaller. As shown in 

Fig. 4, the shape of the distribution is more concentrated when the 

mean reversion rate of the log return is larger, which verifies the 

theoretical analysis. In real financial markets, a larger *  means a 

stronger external intervention. For example, in the Chinese market, 

*  may prove to be larger than that obtained in overseas markets 

because the Chinese government intervenes more in the economy to 

maintain its stability. 

Fig. 5 shows how the mean reverting rate of the volatility process 

affects the shape of the distribution. A larger value of *b

 

means a 

faster reverting speed for the volatility to its equilibrium level *a . In 

our example, the initial volatility value is larger than the equilibrium 

level. Thus, a quick reverting rate creates a smaller variance of the log 

return. Moreover, we can observe that a larger *b  makes the 

distribution more concentrated and have a thinner tail. If the initial 

value of the volatility is smaller than the equilibrium level, the case 

will be the opposite and the distribution will have a fatter tail. 

The way by which jump intensity   affects the distribution of the 

log return is shown in Fig. 6. A larger value of   means that more 

jumps can occur at a certain time, causing larger volatility of the 

underlying asset’s log return, resulting in a bigger variance of the log 

return. As seen in Fig. 6, the distribution of the log return is more 

concentrated with smaller jump intensity  , which is consistent with 

the theoretical analysis. For instance, during a financial crisis, the 

jump intensity can be larger as the disturbance of the financial market 

increases. 

  The relationship between the non-affine volatility coefficient of the 

volatility process   and the log return of the underlying asset is 

shown in Fig. 7. From Fig. 7, we can see that little differences exist 

between the probability density functions with different non-affine 

coefficients under our parameters setting. However, a larger value of 

  creates a fatter left tail and a thinner right tail of the log return’s 

distribution. A bigger volatility’s volatility item results in a smaller 

volatility (variance) of the log return. When the variance of the log  

asset is large enough, the volatility’s volatility item increases in  , 

and when the variance is small enough, it decreases in  . Therefore,  

 
Fig. 11. Probability density functions for different values of  .  

when the spot asset’s price is relatively small, a larger   will make a 

larger variance of the log return, thereby fattening the left tail of the 

density function and vice versa. 

B. Implied Volatility Smile Analysis 

Based on the accurate FFT algorithm, we could further investigate  

the famous “volatility smile” phenomenon implied by the proposed 

model. All parameters settings are presented in Table IV and the 

impacts of * , * ,  , and   on the implied volatility are 

illustrated in Figs. 8 through 11. 

The way by which the implied volatility curve reacts to the different 

values of *  is shown in Fig. 8. The left-tail skew of the volatility 

smile increases with * , and as *  approaches zero, the volatility 

smile tends to be symmetrical. 

The relationship between the long-term equilibrium level of the log 

return of the underlying asset *  and the volatility smile is shown in 

Fig. 9. From Fig. 9, we can observe that the left-tail skew increases 

with the equilibrium value * . A positive correlation coefficient   

leads to a high variance when the price of the underlying asset rises. 

Moreover, the price of the underlying asset increases with the 

equilibrium value * .Therefore, a larger * results in larger variance 

of the log return, thereby leading to larger implied volatility. 

Fig. 10 shows how the jump intensity   influences the implied 

volatility smile. We see that when the price of log return is larger than 

a certain value, the implied volatility increases as the jump intensity 

decreases. When the price of the log return is smaller than a certain 

value, the implied volatility decreases, whereas the jump intensity 

increases. 

Fig. 11 shows the effect of the non-affine volatility coefficient of 

the volatility process   to the implied volatility smile. When the 

price of the log return of the underlying asset is smaller than some 

point, a larger non-affine coefficient   leads to a larger implied 

volatility. The opposite case is observed when the price of the log 

return is bigger than that point. 

C. Comparison between FFT and DMC 

To verify the efficiency and effectiveness of our proposed method, 

we use two numerical algorithms to calculate the European call option 

prices. One is the DMC simulation method based on the dynamic 

model of the underlying asset price (16)–(18) and the other is the FFT 

algorithm based on the numerical solutions proposed in Section V. 

Using the results calculated by DMC as a benchmark, we compare  



 

 

TABLE V 

PARAMATERS VALUES FOR SECTION VI-C 

Param *  *  *a  *b        r  

Value 10 0.40339 0.16 3.33 0.04 0.9 0.5 0.05 

Param 
0S  

0v  T    up  dp  1 n  
2n  

Value 1.3 0.18 1 0.11 0.5 0.5 1 1 

Param 
1 p  

1q  
1  

1   N      M  

Value 1 1 2 2 512 1.5 0.25 50000 

 

 

FFT with DMC on both accuracy and operation time. All the 

parameters used are shown in Table V. 

DMC computes the option price based on the following principle: 

0 0 0 0 0[ | , ] [ ( ) | , ]Q rT Q rT

T TC E e C S v E e S K S v          (34) 

where 
0C

 
denotes the European call option price at 0t  , 

0S  

and
0v  respectively represent the underlying asset price and volatility 

at 0t  , and the other symbols are similar to that in the previous 

sections. 

The specific steps for DMC simulation are as follows. First, 
TS  is 

obtained with the difference method based on 
0S , 

0v , and models  

(16)–(18). Then, the European option price 
0C

 
is calculated by the 

Monte Carlo simulation based on (34), with the idea of using mean 

values to approximate the expectation, that is, 

( )
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1
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T
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C e S K
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              (35) 

Using DMC simulation and FFT algorithm to calculate the 

European option prices with different exercise prices, we obtain the 

final European option prices in comparison in Table VI. (We select 10 

values from the 512 option prices as represented here.)  

Table VI shows a comparison of the European option prices 

calculated by FFT and DMC. A total of 512 evenly-spaced points in 

the interval [ 4 ,4 ]k    , representing 512 different log exercise 

prices for options with the same underlying asset and delivery time, 

are selected. As seen in Table VI, the European option prices increase 

with the exercise prices obtained by either FFT or DMC, which is 

consistent with the option pricing theory. On the other hand, with the 

option prices computed by DMC as benchmark, the maximum error of 

results calculated by the FFT is around 0.0708, thereby demonstrating 

that the FFT numerical solution based on the triple characteristic 

model is accurate. More importantly, running the FFT algorithm to 

compute all of the 512 option prices only takes a total of about 12.97 

min, whereas computing one single option price by DMC when 

adopting 50000 paths to approximate the true value takes about 2.47 

min. After this comparison, we conclude that when multiple risks exist 

in the market, the traditional Monte Carlo simulation is no longer a  

viable method in practice, especially when the data is big. On the 

contrary, the FFT numerical solution is an efficient tool to address 

multiple risks and big data. 

VII. CONCLUSION 

In the big data era, option pricing becomes more challenging 

because data are collected in higher frequency and in larger amounts. 

This requires more general pricing models that fit the characteristics 

of big data better and adaptable algorithms to calculate the option 

prices faster. Through empirical evidences, we show that the 

phenomena of mean reversion, jumps, volatility smile, and 

leptokurtosis and fat tail simultaneously occur in certain kinds of 

markets such as the  

TABLE VI 

EUROPEAN CALL PRICES WITH DIFFERENT EXERCISE PRICES: 

FFT VS DMC 

Exercise price FFT DMC  Errors  

0.821725 0.949253076 0.886697463 0.070548993 

0.863068 0.918218627 0.857520099 0.070783795 

0.90649 0.886174482 0.842281112 0.052112494 

0.952098 0.8530305 0.80792565 0.055827972 

1.000000 0.818694917 0.775975186 0.055052961 

1.050312 0.783074085 0.740406464 0.057627295 

1.103156 0.746072215 0.702606974 0.061862808 

1.158658 0.707591128 0.669813408 0.056400364 

1.216952 0.667530033 0.632033519 0.056162392 

1.342488 0.62578531 0.594622191 0.052408267 

 

 

currency option market. To provide a good pricing tool for this kind of 

market, this paper considers the European option pricing problem in a 

general case when the underlying asset follows a stochastic process 

containing properties of mean reversion, non-affine stochastic 

volatility, and mixed-exponential jumps. With the characteristic 

function method, the European option pricing formula is obtained and 

the numerical solution based on the FFT algorithm is obtained. 

Through extensive numerical experimentation, the model proposed in 

this paper is shown to be effective in capturing the multiple features in 

the market, and the FFT algorithm is also shown to be both accurate 

and efficient even with big data. 

Our work has several limitations. First, to simplify our model, we 

have used three limiting assumptions on the risk-free interest rate, 

transaction cost and market dividends. Based on the modeling 

structure and solution methodology, we could, in further research, 

consider European option pricing problems using empirical methods 

by extending these assumptions for better pricing accuracy 

quantitatively besides characterizing the properties of the market 

qualitatively. Secondly, in addition to the multiple kinds of objective 

risks considered in this paper, subjective fuzziness also exists in the 

market [21]. Therefore, further research can be done to study the 

option pricing problems in the presence of both randomness and 

fuzziness. Except for vanilla European option, many other kinds of 

exotic options, such as barrier, Asian, and look-back options, are also 

worth exploring in the future. 

APPENDIX 

Proof of Theorem 1 The characteristic function of 
TX

 
satisfying 

(16)–(18) is defined as: 

( , , ; ) [ | , ]TiyXQ

t tf t x v y E e X x v v           (A1) 

According to the generalized Feynman-Kac theorem, ( ; , , )f y t x v  is 

a solution to the integral partial differential equation (IPDE), as 

follows: 
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(A2) 

with boundary condition: 

( , , ; ) iyxf T x v y e                         (A3) 

where ( )g J  is the distribution function of the stochastic variable J . 



 

 

According to the coefficients of each term in (A2), we know that 

(A2) is a non-affine IPDE and the analytical solution cannot be 

obtained as a rule. Here, we utilize a perturbation method [22] to 

derive an approximate solution. The main feature of the method relies 

on approximating v  and 
1

2v


 in the PIDE using Taylor expansion 

around *a , which is the long-term mean value of the volatility 

process, as follows: 
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These approximations result in the following PIDE: 
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 (A6) 

As the coefficients of the stochastic differential equations (SDE) 

(16)–(17) are all linear, according to the theories of linear partial 

differential equation, the solution to IPDE (A6) ( , , ; )f t x v y  has the 

following exponential form:   

( , ) ( , ) ( , )( , , ; )  B t T C t T x D t T v iyxf t x v y e            (A7) 

where ( , )B t T , ( , )C t T , and ( , )D t T  are the deterministic functions of 

t . Through boundary condition (A3), we have: 

( , ) 0,       ( , ) 0,       ( , ) 0 B T T C T T D T T        (A8) 

Next, we consider the integral term in (A6):  
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The derivation process is based on the fact that the stochastic variable 

J  representing the percentage of jump amplitude is independent 

from the stochastic process
tX  and ~ ( , , , , , )u i i d j jJ MEJ p p q q  .  

By simplification, we obtain the following equation: 
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(A10) 

As equation (A10) holds true for any t  and x , in definition domains, 

we have: 
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  (A13) 

where ( , )B t T , ( , )C t T  and ( , )D t T satisfy the boundary conditions in 

(A8).   

  According to Zwillinger (1992), ( , )B t T , ( , )C t T  and ( , )D t T  are 

easily solved from equations (A11)-(A13), and the specific forms are 

just illustrated in Section V-A.  
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